
Abstract. Protein secondary structures result both from
short-range and long-range interactions. Here neural
networks are used to implement a procedure to detect
regions of the protein backbone where local interactions
have an overwhelming e�ect in determining the forma-
tion of stretches in a-helical conformation. Within the
framework of a modular view of protein folding we have
argued that these structures correspond to the initiation
sites of folding. The hypothesis to be tested in this paper
is that sequence identity beside ensuring similarity of the
three-dimensional conformation also entails similar
folding mechanisms. In particular, we compare the
location and sequence variability of the initiation sites
extracted from a set of proteins homologous to horse
heart cytochrome c. We present evidence that the
initiation sites conserve their position in the aligned
sequences and exhibit a more reduced variability in the
residue composition than the rest of the protein.
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1 Introduction

It is commonly accepted that protein folding poses a
problem, the solution of which will lead to signi®cant
progress in our understanding of the relationship
between structure and function in biomolecules. In the
last decade the inherent di�culties in the simulation
and theoretical analysis of folding have been circum-
vented, since it has been recognised that the native
structure of proteins is the unique attractor of a
dynamical process (An®nsen's thermodynamic hypoth-

esis) [1] and that the relevant initial conditions are
speci®ed in the residue sequence. As a consequence, a
substantial impetus has been given to devising simpli-
®ed substitutes of the underlying dynamics in terms of
mappings from the space of amino acid sequences to
the space of protein structures [2±5]. Concomitantly,
thorough studies of the variety of protein structures
have led to a standard classi®cation of repetitive
structural motifs and their rationalisation into a
hierarchy of con®gurations [6].

In this context a natural question is whether one can
adopt a bottom-up approach to the problem of protein
folding to deduce relevant features of the dynamical
process by inspection of the resulting native molecular
structure [7]. Such a scenario is consistent with the pic-
ture of folding as a modular process that is started, in the
so-called initiation sites, either by the early stabilisation
of elements of secondary structure, prior to the ap-
pearance of tertiary contacts [8±12] or by the formation
of transition states involving long-range interactions
among the distant residues participating in the nucleus
of folding [13]. Note that here the terms ``short'' and
``long'' represent the distance along the chain and not
spatial separation. These early structures undergo sub-
sequent accretion and are conserved within the native
structure due to their intrinsic compatibility with the
overall fold being stabilised later [11]. In general com-
patibility of partially formed substructures is a funda-
mental requirement to ensure the foldability of proteins.
It has been suggested that this could be done by positing
the existence of small modules independently capable of
folding [8, 10, 11, 14]. The search for such structural
modules has been grounded on geometric criteria [9] and
more recently on statistical analysis of the energy land-
scape [15, 16]. The initiation sites referred to in this
paper are stretches of a-helices that are formed in the
early stages of folding and are conserved throughout
the whole process [7]. Related notions that appeared
in the recent literature are the folding nuclei described in
Ref. [13], the ``extended intermediates'' and the building-
blocks studied in Refs. [17±19], the foldons studied in
Refs. [14, 16] and the notion of independent ``seeds for
folding'' [20].

*Contribution to the Proceedings of Computational Chemistry and
the Living World, April 20±24, 1998, Chambery, France

Correspondence to: M. Compiani
(e-mail: compiani@camserv.unicam.it)

Regular article

Neural networks to study invariant features of protein folding*

M. Compiani1, P. Fariselli2, P. L. Martelli2, R. Casadio2

1Dipartimento di Scienze Chimiche, UniversitaÂ di Camerino, Via S. Agostino 1, I-62032 Camerino MC, Italy
2 Laboratorio di Bio®sica, UniversitaÂ di Bologna, Via Irnerio 42, I-40126 Bologna, Italy

Received: 24 April 1998 /Accepted: 4 August 1998 / Published online: 11 November 1998

Theor Chem Acc (1999) 101:21±26
DOI 10.1007/s002149800m89



2 Searching for the initiation sites of folding
in homologous proteins

To cope with the task of identifying the initiation sites of
protein folding we take advantage of recent progress in
the prediction of protein secondary structures from the
bare residue sequence with neural networks [4, 5, 21].
Capitalizing on the statistical information captured by
the network [21], we have introduced a structural entropy
to measure the degree of independence of helical
structures on the tertiary interactions [7]. This has led
us to formulate in our previous work [7] a minimal
entropy criterion for the identi®cation of self-stabilising
segments that are likely to serve as initiation sites and
time-invariant building-blocks for individual proteins
during the folding process. This procedure provides the
basis for the present investigation, the main aim of
which is to ask the question whether homologous
protein share similar elementary modules of folding.
The homologous proteins chosen to test our working
hypothesis belong to the family of horse heart cyto-
chrome c (PDB protein code: 1HRC). A total of 104
proteins (henceforth the testing set) with sequence
identity larger than 45% have been selected from the
data bank. This strict homology criterion ensures that
the said proteins share the same three-dimensional
structure [22, 23]. Sequence identity is calculated with

reference to the aligned segments in the corresponding
HSSP ®le ftp://ftp.EMBL-Heidelberg.de/pub/databases/
hssp/1hrc.hssp [23]. The multiple sequence alignment has
been carried out with the program CLUSTAL W [24].
We use the same feed-forward neural network as in Ref.
[7] with a standard backpropagation learning algorithm.
The only di�erence to mention is that the network has
been trained on an extended set of 532 non-homologous
proteins �homology � 25%). The training set contained
only one protein of the cytochrome family (1CCR) in
common with the testing set. In the present set-up, which
has been more thoroughly described in previous papers
[4, 5, 7], the current input pattern is generated by a
sliding window, 13 residues in length, scanning the
N residues of the whole sequence. Each pattern is shifted
one residue ahead with respect to the preceding one. The
output layer contains two real valued output neurons,
with activations oi�l� 2 �0; 1�, i � 1; 2 and l � 1ÿ N .
Each of them codes for a speci®c structural class �1 � a-
helix, 2 � non a-helix) to be ascribed to the lth residue
of the protein lying in the central position of the input
pattern. In-between the input and output layers there is
an additional intermediate layer with two real-valued
neurons. The reference secondary structures are gener-
ated from the atomic crystallographic coordinates by
means of the DSSP assignment [25].

The basic ingredient of our procedure is a measure of
the local propensity for the helical structure. Here we use
the results of Refs. [7, 21] and pursue this task by means
of the entropy associated with the network's output [26]
(henceforth prediction entropy)

Spred�l� � ÿ
X2
i�1

oi�l� ln oi�l� �1�

The average entropy hSpredi is de®ned as the average of
Spred�l� over the entire sequence. Next, a local average
of Spred�l� has been performed over a moveable window
of ®ve contiguous residues and centred on the current
lth residue to generate the smoothed plot shown in Fig.
1. Hereafter, to simplify formalism, the smoothed
prediction entropy will be simply referred to as predic-

Fig. 1. Pro®le of the smoothed entropy Spred�l� (continuous curve)
for horse heart cytochrome c (1HRC). Drawing the plot requires
preliminary prediction of the secondary structure of each residue in
the generic position l�l � 1±104� and, subsequently, the evaluation
of Spred�l� using Eq. (1). We have superimposed a binary step
function (dashed line) with non-zero values centred on the regions
that the network predicts in the a-helix structure. According to the
minimal entropy criterion, the below-average minima of Spred�l�
corresponding to helical conformations hallmark the residues that
are likely to belong in the initiation sites of protein folding.
The locations of the two initiation sites of the protein have been
marked by thick horizontal bars around the appropriate entropy
minimum. Note that they correspond to the two helices with lowest
Spred�l�
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tion entropy and indicated by the symbol Spred�l�.
According to the minimal entropy criterion [7] we can
determine the location of the initiation sites by looking
at the residues with a-helical structure that ful®l the
condition Spred�l� � hSpredi (see Fig. 1). For the purpose
of the present investigation we grouped the residues
from proteins with high and low sequence identity.
Starting from the 104 proteins of the testing set two
subsets were thus created, P100 including the residues
from 12 proteins with 90±100% sequence identity and
P50 of residues from 11 proteins with 45±50% sequence
identity. The computation of Spred�l� has been carried
out for each protein used to build P100 and P50 and,
eventually, initiation sites have been individuated in each
entropy plot (see Fig. 1) following the minimal entropy
criterion. The next step consists in comparing the
distribution along the sequences of the nucleation helices
with the distribution of a-helices that do not belong to
initiation sites. To carry out this analysis we have further
split the subsets P100 and P50 as follows. By way of
example, we have taken P100 �HI

100 [HnI
100 [ C100,

where the subsets HI
100 and HnI

100 contain, respectively,
residues belonging to helices that are or are not initiation

sites. The subset C100 is comprised of all the residues in
non-helical structures. A similar partition has been
performed on the set P50. Note that the protein 1CCR
of the training set is contained neither inP100 nor inP50.
The results are shown in Figs. 2 and 3. It is quite
apparent that the initiation sites are a�ected by a
moderate spread and, furthermore, their location is
remarkably conserved along the sequences of the
proteins even when there is a non-negligible di�erence
in sequence identity.

3 Conserved patterns in the initiation sites of folding

The second issue concerns the conservation of residues
along the sequence. The basic idea is that if early
intermediates play a role in driving the folding process
and determining the native structure, they are expected
to be screened better than average from indiscriminate
variability. A related investigation is to be found in the
work of Shakhnovich et al. [27]. To test this hypothesis
we use a sequence entropy Sseq�l� de®ned, on the
aligned traits (without insertions) of the 104 homolo-

Fig. 2. Histograms of the a-hel-
ices predicted with the neural
network in 11 homologous pro-
teins (from the set P50) with
sequence identity in the range 45±
50%. The light grey area indicates
the frequency of occurrence of a-
helical structures for each posi-
tion along the sequence. Similar-
ly, the dark grey area refers to the
frequency of occurrence of a-
helices belonging to the initiation
sites. Helices are quite well spread
over the sequence whereas nucle-
ation helices are mostly concen-
trated in the peaks around
positions 64 and 94. In this ®gure,
as in all subsequent ones, only
aligned traits (without insertions)
are displayed to facilitate the
comparison between the data
from sets P50 and P100

Fig. 3. Histograms of the a-hel-
ices predicted with the neural
network in 12 homologous pro-
teins (from the set P100) with
sequence identity in the range 90±
100%. The light grey and dark
grey areas indicate the same as in
Fig. 2. The concentration of
nucleation helices in the two
peaks already visible in Fig. 2 is
more evident here
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gous proteins, by an equation similar to Eq. (1), where
oi�l� is the probability of occurrence of the ith residue
(i � 1ÿ 20) in the lth position. Clearly conserved
residues are characterized by low values of Sseq�l�.
For the purpose of highlighting a possible relationship
between conservatism and participation in the initiation
sites of folding it is convenient to compare histograms
for the entropy Sseq�l� of the subsets HI

100, H
nI
100, H

I
50

and HnI
50. From Figs. 4 and 5 one can see that the

initiation helices, compared with the remainder of the
proteins, exhibit a less pronounced spread in Sseq�l� and
that their maxima are shifted towards smaller values of
sequence entropy. This is a hint that the sequence of the
nucleation helices is on average better conserved than
in all the other regions of the protein molecule or,
equivalently, that low values of Spred�l� tend to

correlate with low values of Sseq�l�. In order to visualise
this trend better we have drawn histograms showing the
joint probability P�Sseq; Spred�. An example is given in
Fig. 6 for the data relating to the set of nucleation
helices HI

100. To obtain more quantitative information
about the possible correlation between the two entro-
pies we have calculated the correlation coe�cient q [28]
between the values of Sseq�l� and Spred�l� for the
residues of sets Hi

k and Ck (i � nI ; I and k � 50; 100).
The results are summarised in Table 1. The gap
between the values of q associated with HI

k and HnI
k

(k � 50; 100) indicates that a linear relationship exists
between the entropies Sseq�l� and Spred�l� of the residues
located in the initiation helices (the signi®cance levels
for q � 0:410 and q � 0:165 are, respectively, 0.0005
and 0.14).

Fig. 4. Smoothed histograms of
the sequence entropy Sseq�l� of
the 11 proteins used to build the
set P50. The thin line displays the
frequency of helices belonging to
the initiation sites. The thick line
refers to all the other helices not
belonging to the initiation sites

Fig. 5. Smoothed histograms of
the sequence entropy Sseq�l� of
the 12 proteins used to build the
set P100. The thin and thick lines
indicate the same as in Fig. 4
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It is well known that q su�ers from some ambiguity
since although values close to zero mean that linear
correlations are virtually absent, they are not su�cient
to rule out non-linear functional relationships. The
mutual information l [29] is the appropriate statistic
that helps to remove this ambiguity. The values of the
mutual information l�Ck� and l�HnI

k � (k � 50; 100)
have been calculated by using the probability functions
P �Sseq; Spred�. The results show them to be very close to
zero and this con®rms that for the residues lying outside
the nucleation helices the entropies Sseq�l� and Spred�l�
are uncorrelated.

4 Conclusions

In conclusion the histograms of Figs. 2 and 3 support the
claim that the location of the initiation sites is highly
invariant with respect to the sequence identity. More-
over, positional invariance of the nucleation helices has
implications for the kinetics of protein folding. Actually
in modular theories of folding [11, 30] the location of the
early helices constrains the subsequent steps of the
folding process and allows estimates of lower bounds of
the folding time of the protein. One can thus infer that
folding of homologous proteins possessing the same
native structure is likely to be characterised by similar
intermediate steps. As far as the conservation issue is
concerned, there is evidence that sequence variability is
reduced in the helical nuclei for which, in addition, the
values of Sseq�l� and Spred�l� are linearly correlated. The

distributions of Sseq�l� for the residues not belonging to
initiation sites are more similar to a uniform distribution
than the plot for the initiation sites (see Figs. 4, 5) and
this implies that some of these residues are remarkably
well conserved. A reasonable interpretation is that these
residues are presumably responsible for some functional
feature in the folded protein, although they do not play a
key role in the folding process.
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